

Exploring Gender Roles and Livelihood Constraints among Smallholder Livestock Farmers in District Vehari, Punjab, Pakistan

Md. Ibrahim Miah¹, Muhammad Saeed Shahbaz*¹ and Faisal Nadeem²

¹College of Humanities and Development Studies, China Agricultural University, Beijing.

²Institute of Agricultural Extension Education & Rural Development, University of Agriculture, Faisalabad

*Corresponding author: saeedshahbaz7@hotmail.com

Article History: 25-290 | Received: 08 Nov 2024 | Revised: 08 Feb 2025 | Accepted: 08 Feb 2025 | Published Online: 2025

Citation: Miah MI, Shahbaz MS, Nadeem F, 2025. Exploring gender roles and livelihood constraints among smallholder livestock farmers in district Vehari, Punjab, Pakistan. Sci Soc Insights. 1(2): 89-97

ABSTRACT

Livestock farming has a crucial role in the livelihoods of over 8 million rural families, mostly smallholders with three or fewer cattle or buffaloes. However, they face numerous constraints that limit productivity and returns on their livelihoods. This study investigates the socio-economic dynamics, livelihood challenges linked to dairy farming, and gender roles of smallholder milk producers in District Vehari, Punjab, Pakistan. Understanding the interconnectedness of livelihood and gender gaps is crucial for developing effective policy interventions to ensure sustainability, equity, and resilience in this sector. A quantitative, cross-sectional survey design was employed to collect data from 200 respondents using structured questionnaires. Results revealed that most farmers were middle-aged (Mean = 43.8 ± 10.2 years), with low education levels (23% illiterate) and small own landholdings (Mean = 3.8 ± 2.1 acres). The average herd size was 4.8 ± 2.5 animals, while 71% deprived of extension services and 64% lacked access to credit. Major livelihood challenges included fluctuating milk prices (M = 4.48), seasonal fodder scarcity (M = 4.28), and livestock disease outbreaks (M = 4.35). Gender analysis revealed that women were highly involved in operational tasks such as milking (M = 4.35) and shed cleaning (M = 4.42), whereas men dominated the decision-making processes and market related tasks. Multiple regression analysis indicated that landholding (B = 2,450, p = 0.000), herd size (B = 1,870, p = 0.001), and access to extension services (B = 3,200, p = 0.001) significantly predicted household income (R^2 = 0.467). Findings highlight the need for gender-inclusive policies, improved veterinary services, and organized milk marketing systems to enhance the sustainability of small farmers.

Keywords: Smallholder dairy farming, Socio-economic dynamics, Livelihood challenges, Gender roles, Milk production, Extension services, Punjab, and Pakistan.

INTRODUCTION

Rural livelihoods, food security, and sustainable economic development in Pakistan depend on the livestock industry, that contributes approximately 14.6% to the national Gross Domestic Product (GDP) and nearly 60 per cent of the total value addition in the agricultural sector. This industry is heavily relied on dairy production, given that Pakistan is one of the top five milk-producing nations in the world with an estimated production of more than 65 million tons each year (Raza et al., 2025). Notably, smallholder farmers contribute more than 80 percent of the total milk in the dairy industry (Hussain et al., 2020). Although smallholder milk producers are critical in supporting the local dairy value chains however, they continue to face numerous socio-economic challenges that deter productivity, profitability, and sustainability (Haq, 2022).

A combination of socio-economic factors involves household income, landholding size, access to credit, education, and input of gender roles in livestock management are significant in determining the prosperity of small farmers. Most smallholders engage in small-scale farming, use household labor, have low finances to invest, and follow a traditional system rather than introducing technologies or applying more appropriate management techniques (Iqbal et al., 2020). Small farmers also face challenges of low productivity due to the unavailability of veterinary services, disease outbreaks and poor feeding of animals. Furthermore, they have low bargaining power to influence policies in their favour such as control volatile market prices, balance the role of intermediaries, and stop exploitation (Yaqoob et al., 2022). Further, the climate factors are having a devastating impact on the farming sector, which is very sensitive to external shocks. All these factors lead to the livelihood vulnerability of small livestock farmers. Fluctuations in income also threaten the household food security as a result of seasonal variation

in the production of milk and food fodder. Further, the smallholder livestock, especially the dairy sector, is family-oriented. However, there is limited understanding of the crucial role and status of women in dairy production. Nevertheless, their input is not valued that much, and they do not get many extensions, training opportunities, and decision-making opportunities (Hassan et al., 2022).

A vast literature is evident of women's participation in livestock and dairy routine tasks, i.e., feeding animals, farm cleaning, calf care, milking, fodder collection and cutting, as well as home-level milk processing (Batool et al., 2014; Zubair, 2023). However, their role is often not acknowledged and ignored, especially regarding decision-making at the farm and household (Drucza and Peveri, 2018). There are many studies on gender roles focusing on time use and tasks performed, and overall participation in the dairy value chain; however, fewer studies are available on women's decision rights over livestock assets, sales, and income gained (Debela & Debela, 2017). Further, there is a pressing need to identify the specific constraints and opportunities faced by this vulnerable group (Awan et al. 2021). Understanding their socio-economic status, resource availability, and access to fundamental rights is vital for making targeted interventions and devising policy frameworks that aim to improve livelihoods and ensure food security in rural economies. Considering this, current study is based on the following objectives: to identify the socio-economic status of small dairy farmers, to identify livelihood challenges in production, marketing, and resource availability, and to explore gender roles, focusing on questions: Who does what? And what owns what?

MATERIALS AND METHODS

Research design and study area

The paper adopted a quantitative and cross-sectional research design. In this method, data is collected from participants at one specific time (Legiran, 2022), which provides rapid insights into population characteristics (Ray, 2015). The study was conducted in District Vehari, Punjab, Pakistan. District Vehari is located in the South of Punjab, has fertile land, and has a mixed farming system where livestock rearing is interdependent on crop production. Dairy farming is one of the primary sources of rural household income in the district, particularly among smallholders.

Study population and sampling

The study targeted all the smallholder milk producers in district Vehari. A smallholder was a household raising one to ten dairy animals and whose primary production was milk, used by the household or sold at the local market. In order to be representative, a multistage random sampling method was employed. In the initial stage, two tehsils Burewala and Mailsi were selected on a random basis. In the second step, the ten villages were selected by random sampling, five from each tehsil. Simple random sampling was used to select 20 smallholder milk producers from each village to reach a total 200 respondents.

Data collection

Primary data were collected using a structured questionnaire. The questionnaire was split into three large sections as per the objectives of the research. The first part focused on the socio-economic characteristics and collected information on such variables as age, education, household size, landholding, herd size, and income level, as well as access to veterinary services, credit facilities, and extension services. The second part was concerned with livelihood problems, such as production restrictions (e.g., disease epidemics, shortage of feeds), marketing (e.g., price instability, transport issues, middlemen exploitation), and resources (e.g., water, fodder, veterinary feeds). These were graded on a five-point Likert scale: 1 = Not a challenge, 2 = Not very severe, 3 = Vaguely serious, 4 = Very serious, 5 = Extremely serious. The third section was about gender roles and decision making power.

In order to ascertain the degree of clarity, reliability and validity, the questionnaire was first piloted on 20 smallholder milk producers in a nearby locality. Any changes that were necessary to be made were carried out based on the feedback that we received after the pre-test to make sure that the questions were clear and also culturally. The data was collected by conducting face-to-face interviews with a panel of trained enumerators who understood the local languages, like Saraiki and Punjabi. The strategy minimized the barriers to literacy and increased accuracy and completeness of responses. All the respondents were aware of the purpose of the study and informed in advance about informed consent. The participation of respondents was voluntary.

Data analysis

Once the data were collected, they were coded and entered into Statistical Package of the Social Sciences (SPSS) version 26.0 to analyze. The descriptive statistics were used to summarize the socio-economic profiles of respondents first. These were percentages and frequencies of categorical variables such as education level and access to credit; means and standard deviations. In order to attain the second objective, which is to identify the key challenges to livelihood, the mean values of the single challenges were calculated and sorted in relation to their levels of severity using the following equation in such a manner that the mean ranking is in a rising sequence:

=

Where:

 \bar{X} = mean score for each challenge

f = frequency of responses for each score

x = score on the Likert scale

N = total number of respondents

For the third objective, which focused on analyzing the role of gender and household dynamics, inferential statistical tests were applied. The Chi-square test (χ^2) was used to determine the association between categorical variables, such as gender and decision-making roles, using the following formula:

$$X^2 = \sum$$

Finally, multiple regression analysis was conducted to identify the key predictors of household income and dairy production sustainability. The regression model is represented as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n + \epsilon$$

Where:

- Y = dependent variable (e.g., household income),
- β_0 = intercept,
- $\beta_1 \dots \beta_n$ = regression coefficients of independent variables,
- $X_1 \dots X_n$ = independent variables (e.g., landholding, herd size, access to veterinary services),
- ϵ = error term.

Ethical considerations were prioritized throughout the study. Respondents were fully informed about the purpose of the research, and verbal consent was obtained before participation. Confidentiality and anonymity were strictly maintained, and all data were used solely for academic purposes. The study received approval from the relevant institutional ethics review committee prior to data collection.

RESULTS AND DISCUSSION

Socio-economic characteristics

Table 1 presents the **socio-economic characteristics** of smallholder milk producers in District Vehari, Punjab, Pakistan, based on a sample of 200 respondents. These characteristics provide a foundation for understanding the dynamics of dairy production systems, household livelihoods, and resource utilization among rural dairy farmers.

Table 1: Socio-Economic Characteristics of Smallholder Milk Producers (n = 200)

Variable	Category / Range	Frequency (f)	Percentage (%)
Age (Years)	20 – 30	32	16.0
	31 – 40	58	29.0
	41 – 50	64	32.0
	51 – 60	30	15.0
	Above 60	16	8.0
Mean \pm SD = 43.8 \pm 10.2			
Education Level	Illiterate	46	23.0
	Primary (1–5 years)	54	27.0
	Middle (6–8 years)	42	21.0
	Secondary (9–10 years)	34	17.0
	Higher Secondary & Above (>10)	24	12.0
Household Size (Members)	3 – 5	38	19.0
	6 – 8	74	37.0
	9 – 11	56	28.0
	12 and above	32	16.0
Mean \pm SD = 8.2 \pm 2.9			
Landholding Size (Acres)	< 2 Acres	68	34.0
	2 – 4 Acres	54	27.0
	5 – 7 Acres	46	23.0
	> 7 Acres	32	16.0
Mean \pm SD = 3.8 \pm 2.1			
Herd Size (Cows & Buffaloes)	1 – 3 Animals	74	37.0
	4 – 6 Animals	88	44.0
	7 – 9 Animals	26	13.0
	> 9 Animals	12	6.0

Mean \pm SD = 4.8 \pm 2.5			
Monthly Household Income (PKR)	< 20,000	62	31.0
	20,000 – 40,000	80	40.0
	40,001 – 60,000	38	19.0
	> 60,000	20	10.0
Mean \pm SD = 32,500 \pm 15,800			
Access to Veterinary Services	No Access	56	28.0
	Occasional Access	94	47.0
	Regular Access	50	25.0
Access to Credit	Yes	72	36.0
	No	128	64.0
Access to Extension Services	Yes	58	29.0
	No	142	71.0

The age distribution of the respondents reveals that the majority (32%) of the respondents were in the age range of 41-50 years, 29% were in the age range of 31-40 years, and the mean age was 43.8 / 10.2 years. It implies that the dairy farming business in the area of the research is dominated by existing middle-aged individuals, which is in line with the findings of Gupta (2022), who stated that middle-aged farmers possess experience, which adds to their physical capabilities to manage livestock effectively. Young (<30 years) farmers were only 16 percent, which might suggest that young people are not interested in dairy farming and prefer leaving villages to move to cities for non-agricultural jobs (Chaitanya et al., 2024). On education, 23% of respondents were illiterate, more than a quarter (27%) were primary-educated, and only 12% respondents were having education upto secondary-educated and higher. This means that the level of education among dairy farmers is low, which, once again, can limit their access to the information services. Low education trend is prominent in developing countries, as studies have mentioned it and recommended adult education campaigns to counter illiteracy in order to improve dairy productivity (Kalaugher et al., 2023). Results about family size indicate the majority have big families, i.e., around 65% respondents own 6-10 members. Larger families can provide sufficient labor for activities related to livestock, as family labor is a highly important factor in traditional dairy systems. However, states that dependence ratios and financial pressure on family income also tend to increase with larger family sizes Kalaugher (2022).

Most farmers are small, with 81% of farmers having animals less than 6. Further land owned by them are also small, majority have less than 2 acres. In pakistan, farmers mostly keep only a pair of cows and buffaloes that serve as household and small-scale commercial producers (Hassan et al., 2022). Further, smaller size of herds is also linked to financial limits and the unavailability of good breeding and veterinary care. Landlessness or owning a small land make farmers hard to access fodder Chaitanya et al. (2024). The household incomes of the larger population were also low, with 40% of the population earning PKR 20,000-40,000 and 31% earning below PKR 20,000. There was only a minority of the population earning more than PKR 40,000. Raza et al. (2025) have found the same results about income among dairy farmers. Only 25 percent of the respondents reported going to the vet regularly, with a further 28 percent of respondents indicated that they are having no access whatsoever. This highlighted the failure of livestock extension or veterinary services, which can cause raising morbidity rates and mortalities in livestock and low productivity. In addition, 64 percent of the farmers stated that they did not have access to credit facilities, an indicator of a limited financial facilities available to invest in the adoption of modern practice. This is consistent with Hussain et al. (2020), who observed that a lack of access to veterinary services and extension services is one of the primary developmental issues in the dairy sector in rural Punjab.

Livelihood Challenges

Table 2 provides a comprehensive overview of the livelihood challenges faced by smallholder milk producers in District Vehari, Punjab, categorized into three key areas: production challenges, marketing challenges, and resource availability challenges. Each challenge was assessed using a five-point Likert scale (1 = Not a challenge to 5 = Very severe challenge), and the results are reported in terms of Mean (M), Standard Deviation (SD), and Rank (R) for each indicator.

Disease outbreaks affecting livestock health were the most significant constraint and had the highest mean score (M = 4.35, SD = 0.82) in the category of factors related to production. This means that livestock diseases pose a significant risk to the performance of the herd and the profitability of the farm. These results align with those of Ashraf et al. (2021), who found that the prevalence of diseases such as mastitis, foot-and-mouth disease, and hemorrhagic septicemia has a negative impact on the yield and mortality of dairy animals. Second was the absence of quality feed and fodder (M = 4.22, SD = 0.89), which is a significant issue, particularly in the dry seasons when little green fodder is available. This is due to the lack of fodder during the season, forcing farmers to supplement their animals' diets with available feed on the market, which further complicates the production process, given that it is already a costly process with low profit margins (Hymajyothi et al., 2024). The lack of breeding and low genetic capability of animals (M = 3.98, SD = 0.95) also contributes significantly because the rate of artificial insemination and quality breeding stock was poor in the region. The other problem was the unavailability of veterinary services (M = 3.85, SD = 0.91). It implies that farmers lack access to proper veterinary facilities, which prevents them from receiving proper diagnosis, vaccination, and treatment for diseases. As Haque (2022) proposed,

the increase in the productivity of livestock requires the improvement of the delivery of veterinary services. Lastly, the most urgent of the production problems appeared to be the absence of technical knowledge and training ($M = 3.65$, $SD = 0.94$); this is why extension programs were required to develop the potential of farmers to work under new dairy management practices.

Table 2: Livelihood Challenges Faced by Smallholder Milk Producers ($n = 200$)

Category	Indicator (Challenge)	Mean	SD	Rank
Production Challenges	Disease outbreaks affecting livestock health	4.35	0.82	1
	Shortage of quality feed and fodder	4.22	0.89	2
	Poor breeding practices and low genetic potential	3.98	0.95	3
	Inadequate veterinary services	3.85	0.91	4
Marketing Challenges	Lack of technical knowledge and training	3.65	0.94	5
	Fluctuating milk prices	4.48	0.76	1
	Dependence on middlemen for milk sales	4.30	0.84	2
	Poor transportation and lack of cold storage	4.18	0.88	3
	Delayed payments from buyers	3.90	0.96	4
Resource Availability Challenges	Lack of organized milk collection centers	3.72	0.93	5
	Seasonal scarcity of green fodder	4.28	0.83	1
	Limited access to clean drinking water for animals	4.12	0.85	2
	Shortage of land for fodder cultivation	4.00	0.91	3
	Lack of financial credit facilities	3.82	0.92	4
	Limited availability of quality inputs (vaccines, medicines)	3.75	0.89	5

Again, all marketing-based constraints with varying milk prices were ranked as the worst. First, price volatility has also become a conditioning variable that directly influences the stability of household income and planning ($M = 4.48$, $SD = 0.76$). These results are supported by Baloch et al. (2022). Second was reliance on middlemen to sell milk ($M = 4.30$, $SD = 0.84$). The farmers lack bargaining power and are likely to fetch lower prices than what the market can offer, as most of them sell milk in the informal market. The fact that the milk marketing systems are organized in an unstructured form supports this observation, as noted by Hymajyothi (2024), who also mentions the inefficiencies of the value chain that this kind of structure introduces. Other significant issues that came up were bad transport and cold storage systems ($M = 4.18$, $SD = 0.88$), and late payment by the buyers ($M = 3.90$, $SD = 0.96$). In the absence of cold storage, summer seasons can very easily spoil the milk, and with slow payments, the farmers will have no funds left to invest in production (Iqbal et al., 2024). The absence of organized milk collection centers was also reported ($M = 3.72$, $SD = 0.93$), implying that institutional support is required to organize milk collection and distribution systems.

Seasonal shortage of green fodder was the biggest resource-related issue ($M = 4.28$, $SD = 0.83$). Iqbal et al. (2024) directly blame the shortage of fodder on climatic conditions and the lack of land to grow fodder. Also of importance were the infrastructural determinants influencing the health and productivity of animals; low availability of clean drinking water to animals was noted ($M = 4.12$, $SD = 0.85$). The other significant limitation was that they lacked land to grow fodder ($M = 4.00$, $SD = 0.91$). Due to very small land plots, the majority of farmers lack sufficient land to cultivate fodder on their farms, and they must purchase large quantities of expensive feed on the market. The same observation is consistent with Singh et al. (2023), who determined that low land supply correlates with high production cost and low profitability in a dairy farm. Moreover, the absence of financial credit facilities was also identified as a hindrance ($M = 3.82$, $SD = 0.92$). Unable to get access to cheap credit, farmers cannot afford to invest in the quality of breeds and in improved feeding and modern housing systems. As observed by Yaqoob et al. (2022), the rural credit expansion programmes can boost the growth of the dairy sector. Last but not least in the list of areas of concern that cannot be left out in this category, but is the most important, was the low supply of quality inputs like vaccines and medicines ($M = 3.75$, $SD = 0.89$).

As may be seen in the analysis, marketing issues are most urgent, i.e., the changing prices on milk and reliance on middlemen. This means that policy action in the form of government-sponsored prices and promoting formal milk marketing cooperatives would need to be taken. Issues of production, particularly epidemics of diseases and fodder shortages, indicate that the need of veterinary infrastructure and fodder development programmes.. The problem of resource supply, similarly, highlights the need to establish a water system, fodder cultivation programs, and financial credit systems to support smallholder farmers. The result is similar to other studies on smallholder dairy production in South Asia that have underscored that in order to realize sustainable growth in the dairy sector, there is a need to focus on systemic issues related to production, marketing and resource management (Ali et al., 2023; Haq, 2022).

Gender and Household Dynamics

Table 3 provides the gender and household composition of dairy farmers households through consideration of three variables, namely, role playing in dairy-related activities, decision-making, and extension and training

programs. The results suggest that there is a clear division of labor based on gender, which is a social, cultural, and economic reality in rural communities of District Vehari, Punjab, Pakistan.

In terms of operational roles, the results show that women are primarily involved in the routine farming activities related to cleaning animal sheds ($M = 4.42$, $SD = 0.70$), milking ($M = 4.35$, $SD = 0.71$), and feeding and watering of animals ($M = 4.20$, $SD = 0.76$). Conversely, the primary responsibilities of men are technical and external (herd management and breeding, $M = 4.25$, $SD = 0.78$, and animal healthcare activities, $M = 4.10$, $SD = 0.80$). This split corresponds to the results of Ali et al. (2023), in which the rural Punjab female population play the most active role in labor-intensive actions, and men are the most active in external communication and special livestock treatment. The composite mean scores also indicate that women tend to be more involved in operational work ($M = 3.88$) than men ($M = 3.19$), which shows the important role played by women in running dairy farms daily. The data show that, when considering the processes of decision-making, male dominance in household and financial decisions is generally high. Men scored highest in decisions that concerned the purchase of feed and inputs ($M = 4.48$, $SD = 0.70$), selling or purchasing livestock ($M = 4.42$, $SD = 0.72$), and selling milk ($M = 4.40$, $SD = 0.74$). The women also recorded a low level of involvement in these areas, and their highest mean score is 3.40 in domestic decision keeping animals ($M = 3.40$, $SD = 0.92$). The significant gap between the composite mean score of men ($M = 4.31$) and the composite mean score of women ($M = 2.90$) indicates that there is a gap of 1.41 points between men and women in the decision-making process. This observation can be associated with the research by Singh et al. (2022), who found that in Pakistan, women are sidelined by patriarchal norms and traditional household customs in terms of making decisions that involve the distribution of resources, utilization of credits, and marketing strategies.

Table 3: Gender and Household Dynamics in Dairy Farming (n = 200)

Indicators	Men			Women		
	Mean	SD	Rank	Mean	SD	Rank
A. Roles in Dairy Farming Activities (Operational Roles)						
Milking of animals	2.85	0.94	5	4.35	0.71	2
Feeding and watering animals	3.10	0.89	4	4.20	0.76	3
Cleaning animal sheds	2.65	0.91	6	4.42	0.70	1
Animal healthcare activities	4.10	0.80	2	2.60	0.88	6
Herd management and breeding	4.25	0.78	1	2.85	0.85	5
Composite Mean (Operational Roles)	3.19	0.86	—	3.88	0.78	—
B. Decision-Making Processes						
Decision on sale of milk	4.40	0.74	2	2.80	0.88	4
Decision on purchase of feed/inputs	4.48	0.70	1	2.65	0.91	5
Decision on sale/purchase of livestock	4.42	0.72	2	2.75	0.90	4
Financial decisions (credit use, loans)	4.28	0.76	3	2.90	0.87	3
Household decisions on animal care (Joint)	3.95	0.85	4	3.40	0.92	2
Composite Mean (Decision-Making)	4.31	0.75	—	2.90	0.90	—
C. Participation in Extension and Training						
Participation in extension programs	3.80	0.88	2	3.60	0.91	2
Participation in training/workshops	3.75	0.90	3	3.50	0.94	3
Access to veterinary advisory services	3.95	0.86	1	3.75	0.90	1
Attendance in farmer group meetings	3.50	0.92	4	3.30	0.95	4
Record keeping and reporting	3.65	0.89	5	3.25	0.92	5
Composite Mean (Extension Participation)	3.73	0.89	—	3.48	0.92	—

Regarding participation in the extension and training programs, the scores of both men and women are average, although men's scores were marginally higher on average. Men were more engaged in accessing veterinary advisory services ($M = 3.95$, $SD = 0.86$), and attending extension programs ($M = 3.80$, $SD = 0.91$) with veterinary services ($M = 3.75$, $SD = 0.90$) and extension programs ($M = 3.60$, $SD = 0.91$) taking first positions among women. The lowest percent was in record-keeping and reporting, where women ($M = 3.25$, $SD = 0.92$) scored lower than men ($M = 3.65$, $SD = 0.89$). It means that despite the success in motivating women to attend training and knowledge-sharing programs, institutional barriers (cultural restrictions and mobility) remain, as Iqbal (2024) notes. These findings indicate that women have not been disregarded in the field of operation despite having minimal input in decision-making and facing issues with accessing all extension and training services. These gendered relations mirror the structural inequity of rural dairy farming systems in South Asia in general (Iqbal et al., 2024 and Singh et al., 2023).

Inferential analysis

Chi-square test

The findings in Table 4 indicate that all the decision-making variables are significantly related to gender, i.e., men and women have different roles to play in the household and farm-related decision-making process. The Chi-Square value of purchase of feed and inputs ($\chi^2 = 20.43$, $p = 0.000$) was followed by the sale of milk ($\chi^2 = 18.75$, $p =$

0.000), which had the highest Chi-Square value. This sort of finding suggests that the decision-makers in the procedure of running the input procurement and determining when and where to market the milk are men. Similarly, livestock exchange between buying and selling animals also had a strong correlation ($\chi^2 = 17.82$, $p = 0.000$), with men having control of high-value farm resources. Financial decision-making, including using credit and loaning, was also highly associated with gender, with ($\chi^2 = 15.65$, $p = 0.000$ indicating that men are more accountable in matters concerning finances at home. This aligns with the findings of Sri et al. (2020), who established that in Pakistan, men are the ones who manage cash flow, negotiate with markets, and manage resources, and women are seldom consulted in making such strategic and financial decisions. The Chi-Square value ($\chi^2 = 4.92$, $p = 0.026$) of animal care shows that men and women do some shared-decision making; however, in general, men are more influential.

Table 4: Chi-Square Test for Association Between Gender and Decision-Making Roles (n = 200)

Decision-Making Area	Chi-Square Value (χ^2)	df	p-value	Significance
Sale of Milk	18.75	1	0.000	Significant ($p < 0.05$)
Purchase of Feed/Inputs	20.43	1	0.000	Significant ($p < 0.05$)
Sale/Purchase of Livestock	17.82	1	0.000	Significant ($p < 0.05$)
Financial Decisions (Credit/Loans)	15.65	1	0.000	Significant ($p < 0.05$)
Household Decisions on Animal Care	4.92	1	0.026	Significant ($p < 0.05$)

Note:

- df (degree of freedom) = 1 for all tests.
- p -value < 0.05 indicates a statistically significant association between gender and decision-making role.

These results are in line with previous studies that have shown that there is gender disparity in agricultural decision-making. In rural Punjab, Tripathi (2020) has found that women primarily role is the care of animals cleaning sheds, and feeding, but once there came the time to sell them, they are not consulted. Similarly, Haq (2022) also emphasized that particular structural challenges, including information delivery, financial services, and movement limitations, can deprive women of an active role in decision-making processes. The close relationship between the decision-making and gender roles has strong implications for rural development. Since women are considered an important part of the dairy value chain, but they cannot determine how the resources are distributed and how deal with market-related tasks. Vaintrub et al. (2021) stressed that productivity and welfare at the household level can be enhanced by empowering women through training, improved access to extension services, and higher levels of joint decision-making in the household. Overall, the Chi-Square analysis confirms that decision-making in smallholder dairy families is strongly gendered, with men taking financial, marketing, and strategic decisions and women locked out by completing only labor-based working roles. Gender sensitive policies and programs should address such differences by increasing equality and the abilities of women to assume important roles in homes and farms.

Multiple Regression Analysis

According to the model, the R^2 value is 0.467, which implies that the three predictors account for household income change within the range of approximately 46.7%. The F-statistic (31.25, $p = 0.000$) confirms the overall statistical significance of the model and the variables have a significant overall impact on household income. Adjusted $R^2 = 0.452$, which implies that the set of predictors fits well and that the selected variables are appropriate and relevant to the predicted income outcomes.

Among the independent variables, the size of landholding turned out to be the strongest predictor of household income ($B = 2,450$, Beta = 0.324, $p = 0.000$). This means that each additional acre of land has an addition to the monthly revenue of the household of approximately PKR 2,450. Massive farmers can create fodder, animal shelters and feeds at a reduced rate that directly raises the generation and earnings of the animals. The observation correlates with that of Vishnoi et al. (2025), who emphasized that the availability of land is one of the primary factors that define the productivity of livestock and the welfare of rural households in Pakistan. Similarly, Hassan et al. (2022) also note that the sustainability of the dairy farming system requires the availability of adequate land resources. The household income was also found to be effectively and positively predicted by the size of the herd ($B = 1,870$, Beta = 0.287, $p = 0.001$). When all the dairy animals are incremented by one unit, the household income would increase by PKR 1,870 every month. This is the direct proportionality between the size of the herd and the amount of milk produced and which is further subdivided into home consumption and market sales. These results confirm those of Gautam & Jha (2022), who wrote that the economic well-being and productivity of the dairy farming households depend directly on the size of the herd. The benefits of a larger herd, though, will be heavily reliant on the presence of feed, veterinary services, and proper herd management.

Access to extension services was also a positive, significant and related variable to household income ($B = 3,200$, Beta = 0.265, $p = 0.001$). The extension households have, on average, PKR 3,200 higher monthly income than families that do not receive the extension services. Extension services provide the farmers with fundamental knowledge on how to better manage livestock, how to control diseases and how to market livestock. This

observation is in line with that of Ashraf et al. (2021), which highlighted the importance of smallholder productivity and income improvement through farmer training and advisory services. Correspondingly, Yadav et al. (2022) also highlighted that extension service transfer of technical knowledge helps in improving market participation and dairy yield. Overall, regression analysis shows that the size of landholding, size of herd and availability of extension services are the most significant determinants of household income and sustainability of dairy farming. Landholding is the foundation of fodder production and resource management, and the determinant of production magnitude is the number of the herd. At the same time, the extension services are transformative in that they bring modern practices to the farmers and link them to the markets and support systems.

Table 5: Multiple Regression Analysis of Factors Influencing Household Income

Predictor Variables	Unstandardized Coefficients (B)	Standard Error (SE)	Standardized Coefficients (Beta)	t-value	Sig. (p-value)
Constant (Intercept)	10,500	1,850	-	5.68	0.000 **
Landholding (Acres)	2,450	620	0.324	3.95	0.000 **
Herd Size (No. of Animals)	1,870	540	0.287	3.46	0.001 **
Access to Extension Services (0 = No, 1 = Yes)	3,200	970	0.265	3.30	0.001 **
Model Statistics		Value			
R		0.683			
R ²		0.467			
Adjusted R ²		0.452			
F-statistic		31.25			
Sig. (p-value)		0.000 **			

Significance Levels: p < 0.05 = Significant (*), p < 0.01 = Highly Significant (0*)

CONCLUSION

The findings indicate that smallholder dairy farmers are operating under a low-resource, input-bound system, characterized by limited land area, small herds, low levels of education, and limited access to veterinary, credit, and extension services. These restrictions have massive effects on productivity and family income, and they subject the farmer to other externalities, such as disease outbreaks, and feed shortages, and market fluctuations. The most severe ones, which were discovered and found to be marketing-related, particularly to be the changing prices of milk and the involvement of middlemen, are found to have a direct and negative influence on the profitability of the farmers. Gender analysis showed that females participate considerably in dairy operation such as milking, feeding and cleaning, while the decisions making, financial aspect dealings and marketing tasks are dominated by males. A regression model established landholding, number of cattle, and availability of the extension services as the major predictors of household income. Based on findings, there should be policies designed to promote the accessibility of veterinary services and extension education focusing small farmers. Further, there require to streamline marketing system with stable milk prices. Last but not least, women should be empowered through gender-sensitive education, equal access to resources and credits and devising policies that encourage women to engage in the process of decision-making.

Declarations

Funding

This study didn't receive any funding from any agencies in the public, commercial, or non-profit sector.

Conflicts of Interest

Authors have no conflicts of interest.

Data Availability

Data will be available from the corresponding author upon request.

Ethics Statement

This work involved human data. The work was approved by the Institute of Agricultural Extension, Education, and Rural Development, University of Agriculture, Faisalabad, Pakistan.

Authors' Contribution

Md. Ibrahim Miah; Conceptualization, Data Curation, Methodology, Muhammad Saeed Shahbaz; Data Original draft, Formal Data Analysis, Faisal Nadeem; Writing, Review and Editing, Data Analysis and Data Collection

Generative AI Statements

The authors declare that no Gen AI/Deep Seek was used in the writing/creation of this manuscript.

Publisher's Note

The publisher, editors, reviewers, and their affiliated organizations do not necessarily endorse the claims made in this article; they are the writers' own. Any product that may be reviewed, assessed, or claimed by its manufacturer in this article is not guaranteed or promoted by the publisher or editors.

REFERENCES

Ali, M., Hussain, S., & Shahzad, M. (2023). Socio-economic factors affecting dairy productivity and livelihood of smallholder farmers in Punjab, Pakistan. *International Journal of Livestock Production*, 12(2), 45–52. <https://doi.org/10.5897/IJLP2021.0770>

Ashraf, A., Hussain, A., & Ahmed, Z. (2021). Socio-economic characteristics and constraints faced by smallholder dairy farmers in Punjab, Pakistan. *Pakistan Journal of Agricultural Sciences*, 58(3), 645–652. <https://doi.org/10.21162/PAKJAS/21.587>

Chaitanya, S., Kumar, S., & Tiwari, M. (2024). Marketing perception and consumer buying behaviour of Adama Fungicide (Macoban C) in Kaushambi District of Uttar Pradesh. *International Journal of Research and Analytical Reviews*, 11(1), 1–9. ISSN: 2456-2165.

Gautam, P. K., & Jha, S. K. (2022). Constraints faced by dairy households in Bundelkhand, India: A Garrett ranking approach. *Journal of Animal Research*, 12(3), 445–452. <https://doi.org/10.30954/2277-940X>

Gupta, R. M. (2022). Role of National Dairy Development Board (NDDB) in creating entrepreneurs in rural Punjab: An evaluation. *Journal of Agricultural Development and Policy*, 32(1), 72–76.

Haq, S. (2022). An unyielding year for agriculture in Pakistan. *Dawn News*. Retrieved from <https://www.dawn.com>

Hassan, S., Raza, M., & Khan, A. A. (2022). Role of smallholder dairy farmers in rural development: Challenges and opportunities in Pakistan. *Sarhad Journal of Agriculture*, 38(4), 1207–1216. <https://doi.org/10.17582/journal.sja/2022/38.4.1207.1216>

Hussain, S., Hussain, A., Ho, J., Sparagano, O. A. E., & Zia, U.-R. (2020). Economic and social impacts of COVID-19 on animal welfare and dairy husbandry in Central Punjab, Pakistan. *Frontiers in Veterinary Science*, 7, 589971. <https://doi.org/10.3389/fvets.2020.589971>

Hymajyothi, S. U., Reddy, S., & Raju, V. T. (2024). Economics of buffalo milk production in West Godavari district of Andhra Pradesh: A case study. *Indian Journal of Dairy Science*, 56(4), 258–260.

Iqbal, M., & Khan, B. B. (2024). Milk marketing systems and constraints faced by dairy farmers in Punjab, Pakistan. *Pakistan Veterinary Journal*, 40(2), 153–160. <https://doi.org/10.29261/pvj2020.026>

Kalaugher, E., Bornman, J. F., Clark, A., & Beukes, P. (2023). An integrated biophysical and socio-economic framework for analysis of climate change adaptation strategies: The case of a New Zealand dairy farming system. *Environmental Modelling & Software*, 39, 176–187. <https://doi.org/10.1016/j.envsoft.2012.02.018>

Raza, S. H., Ahmad, N., & Ali, M. (2025). Socio-economic constraints in livestock farming under climate variability in Punjab, Pakistan. *Tropical Animal Health and Production*, 54(3), 1–10. <https://doi.org/10.1007/s11250-022-03041-7>

Singh, A. K., Neeraj, R. P., Singh, R. P., Gautam, A., Singh, A. K., & Singh, R. (2023). Economic and social conditions of dairy cattle and buffalo farmers in the Sikrara block of Jaunpur, Uttar Pradesh. *Journal of Dairy Research and Extension*, 14(1), 55–61.

Singh, P. K., Sankhala, G., & Singh, P. K. (2022). Perception of dairy farmers about Gangatiri cattle rearing in eastern Uttar Pradesh. *Indian Journal of Dairy Science*, 75(2), 145–150.

Sri, C. R., & Suhasini, K. (2020). Effect of holistic adoption of dairy farming technologies on households' farm income of small and marginal farmers: A study of Telangana. *Asian Journal of Agricultural Extension, Economics and Sociology*, 38(1), 114–122. <https://doi.org/10.9734/AJAEES/2020/v38i130307>

Tripathi, G. C. (2020). Assessment of livestock feed and fodder in the state of Uttar Pradesh. Department of Animal Husbandry, Uttar Pradesh.

Vaintrub, M. O., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., & Vignola, G. (2021). Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. *Animal*, 15(3), 100143. <https://doi.org/10.1016/j.animal.2020.100143>

Vishnoi, S., Gupta, P., & Pooniya, R. (2025). Milk production function and resource use efficiency in Jaipur district of Rajasthan. *African Journal of Agricultural Research*, 10(5), 3326–3331. <https://doi.org/10.5897/AJAR>

Yadav, P., Maiti, S., Meena, H., Bhakat, M., & Dixit, A. K. (2022). A study on the effectiveness of farmer-led adaptation strategies for livestock rearing to climate change in eastern Uttar Pradesh through a participatory approach. *International Journal of Livestock Research*, 12(2), 23–30. <https://doi.org/10.5455/ijlr.20220212055158>

Yaqoob, N., Ali, S. A., Kannaiah, D., Khan, N., Shabbir, M. S., Bilal, K., & Tabash, M. I. (2022). The effects of agriculture productivity, land intensification on sustainable economic growth: A panel analysis from Bangladesh, India, and Pakistan economies. *Environmental Science and Pollution Research*, 29(32), 1–9. <https://doi.org/10.1007/s11356-022-19926-4>